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A NOTE ON GENERALIZED #-DERIVATIONS OF
PRIME *RINGS
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ABSTRACT. The aim of the present paper is to establish some re-
sults involving generalized #-derivations in *-rings and investigate
the commutativity of prime *-rings admitting generalized *-derivations
of R satisfying certain identities and some related results have also
been discussed.

1. Introduction

Over the last few decades, several authors have investigated the re-
lationship between the commutativity of the ring R and certain specific
types of derivations of R. The first result in this direction is due to E.
C. Posner [8] who proved that if a ring R admits a nonzero derivation d
such that [d(z),z] € Z(R) for all x € R, then R is commutative. This
result was subsequently, refined and extended by a number of authors.
In [7], Bresar and Vuckman showed that a prime ring must be commuta-
tive if it admits a nonzero left derivation. Recently, many authors have
obtained commutativity theorems for prime and semiprime rings admit-
ting derivation, generalized derivation. Bresar and Vukman [5] studied
the notions of a *-derivation and a Jordan *-derivation of R. The aim
of the present paper is to establish some results involving generalized *-
derivations in *-rings and investigate the commutativity of prime *-rings
admitting generalized *-derivations of R satisfying certain identities and
some related results have also been discussed.
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2. Preliminaries

Throughout R will represent an associative ring with center Z(R).
For all z,y € R, as a usual commutator, we shall write [z,y] = zy — yz,
and x oy = zy + yx. Also, we make use of the following two basic
identities without any specific mention:

zo(yz) = (zoy)z —ylr, 2] = y(roz) +[z,y]z

(zy) oz = a(yo2) — [z, 2]y = (v 0 2)y + [y, 2]
[zy, 2] = zly, 2] + [z, 2]y and [z, y2] = y[z, 2] + [, y]z.
Let R is a ring. Then R is prime if aRb = {0} implies a = 0 or
= 0. An additive mapping d : R — R is called a derivation if d(xy) =
d(x)y + xd(y) holds for all z,y € R. An additive mapping = — z*
of R into itself is called an involution if the following conditions are
satisfied (i) (zy)* = y*z*, (ii) (2*)* = z for all x,y € R. A ring equipped
with an involution is called an x-ring or ring with involution. Let R
be a *-ring. An additive mapping d : R — R is called an x-derivation
if d(zy) = d(z)y* + zd(y) holds for all z,y € R. An additive mapping
d: R — Ris called a reverse x-derivation if d(zy) = d(y)z*+yd(x) holds
for all z,y € R. An additive mapping F': R — R is called a generalized
derivation if there exists a derivation d such that F(zy) = F(x)y+xd(y)
for all x,y € R. Let R be an *ring. An additive mapping F' : R — R
is called a generalized *-derivation if there exists an *-derivation d such
that F(zy) = F(x)y* + xd(y) for all z,y € R. An additive mapping
F : R — R is called a generalized reverse x-derivation if there exists
an *-derivation d such that F(zy) = F(y)z* + yd(z) for all z,y € R.
An additive mapping F' : R — R is called a right x-multiplier of R if
F(zy) = 2*F(y) for all z,y € R. Also, an additive mapping F': R — R
is called a left x-multiplier of R if F(xy) = F(z)y* for all z,y € R. An
additive mapping F': R — R is called a reverse left x-multiplier of R if
F(zy) = F(y)z* for all ,y € R and an additive mapping F': R — R
is called a reverse right x-multiplier of R if F(xy) = y*F(x) for all
z,y € R.

3. Generalized *-derivations of prime x-rings

LEMMA 3.1. Let R be a semiprime *-ring and a € R. If R admits a

generalized *-derivation F' associated with an x-derivation d of R and
F(z) = [z,a] for all x € R, then F = 0.
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Proof. By hypothesis, we have
(3.1) F(xy) = F(x)y* + zd(y), ¥ z,y € R.
Replacing y by yz in (3.1), we have
(3.2) F(x(yz)) = F(x)z"y" + zd(y)z" + zyd(2), ¥V z,y,2 € R
and
(3.3) F((xy)z) = F(x)y*z" + xd(y)z" + zyd(2), V z,y,z € R.
Combining (3.2) and (3.3), we have
(3.4) F(z)[y*,z*] =0, Yz,y,2 € R.

Substituting y* for y and 2* for z in (3.4), we have F(z)[y, z] = 0 for
all x,y,z € R. Again, replacing y by yx in the last relation, we have
F(z)y[z,z] = 0 for all x,y,z € R. This implies that F(x)Rz,z] =
{0} for all x,z € R. Taking a in stead of z in this relation, we get
F(x)R[z,a] = {0} for all z € R. If F(z) = [x,a], then, we have
[a, x| R[a,z] = {0} for all z € R. Since R is semiprime, we have [z,a] = 0,
that is, F'(z) = [z,a] = 0 for all z € R. This implies that F' = 0. O

THEOREM 3.2. Let R be a semiprime x-ring. If R admits a generalized

x-derivation F associated with x-derivation d of R, then ' maps from
R to Z(R).

Proof. By hypothesis, we have
(3.5) F(zy) = F(x)y* + xd(y), Y z,y € R.
Replacing y by yz in (3.5), we have
(3.6) F(x(yz)) = F(x)z"y" + 2d(y)z" + xyd(2), V z,y,z € R.
On the other hand,
(3.7) F(zyz) = F((xy)z) = F(x)y" 2" +zd(y)z* +xyd(z), Vz,y,2 € R.

Combining (3.6) with (3.7), we have F(z)[y*, 2*] =0 for all z,y,z € R.
Substituting y* for y and z* for z in this relation, we have F(x)[y, z] = 0
for all z,y, z € R. Taking yF'(x) instead of y in the last relation, we have

(3.8) F(z)y[F(z),2] =0, Vz,y € R.
Multiplying the left side of (3.8) by zF'(z), we have
(3.9) 2F(z)F(z)y[F(x),2] =0, ¥V z,y,z € R.

Again, multiplying the left side of (3.8) by F(z)z, we have
(3.10) F(z)zF(x)y[F(x),z] =0, ¥V z,y,z € R.
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Subtracting (3.9) from (3.10), we have[F(x), z|F(x)y[F(z), z] = 0 for all
x,y,z € R. Hence we have [F(z),z]R[F(x),z] = {0} for all z,z € R.
Since R is semiprime, we have [F'(z),z] = 0 for all z, z € R. Therefore
F is a mapping form R into Z(R). O

THEOREM 3.3. Let R be a prime x-ring. If R admits a generalized

x-derivation F associated with an -derivation d such that F'(xz) # x and
F(zy) = F(x)F(y) for all z,y € R, then d = 0.

Proof. By hypothesis, we have
(3.11) F(zy) = F(x)y* + zd(y) = F(x)F(y), ¥V =,y € R.
Replacing = by xz in (3.11), we have
Fe)F(2)y* + vzd(y) = F(z) F(2)F(y)
— F(e)F(2y) = F@)(F(2)y" + #d(y)),
which implies that (z — F(x))zd(y) = 0 for all z,y,z € R. Hence we
have (x — F(z))Rd(y) = {0} for all =,y € R. Since R is prime, we have

x—F(x) =0ord(y) =0 for all z,y € R. But F(z) # =z, and so d(y) =0
for all y € R, that is, d = 0. ]

THEOREM 3.4. Let R be a prime x-ring. If R admits a generalized
x-derivation F associated with an x-derivation d of R and F(xy) =
F(y)F(x) for all x,y € R, then d = 0.

Proof. By hypothesis, we have

(3.12) F(zy) = F(x)y" + zd(y) = F(y)F(z), V 2,y € R.
Replacing = by zy in (3.12), we have

Fley)y” + zyd(y) = F(y)F(ey) = F(y)(F(2)y” + zd(y)),
which implies that F(y)F(x)y* + zyd(y) = F(y)F(x)y* + F(y)zd(y) for
all z,y € R. Hence we have
(3.13) zyd(y) = F(y)zd(y), ¥V z,y € R.
Taking wx instead of z in (3.13) and using (3.13), we have wF'(y)zd(y) =
F(y)wzd(y) for all x,y,w € R. This implies that [w, F(y)]zd(y) = 0,
and so [w, F(y)|Rd(y) = {0} for all w,y € R. Since R is prime, we have
d(y) =0 or [w, F(y)] = 0 for all y,w € R. Let K = {y € R|d(y) = 0}
and L = {y € R|[w,F(y)] = 0,Y w,y € R}. Then K and L are both
additive subgroups and K U L = R, but (R, +) is not union of two its
proper subgroups, which implies that either K = R or L = R. In the

former case, we have d = 0. If L = R, then [w, F(y)] = 0 for all w,y € R.
Hence we have F(y) € Z(R), and so F(zy) = F(y)F(z) = F(x)F(y) for
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all z,y € R. Since F' acts an endomorphism of R, it follows that d =0
via Theorem 3.3. U

THEOREM 3.5. Let R be a noncommutative prime x-ring. If R ad-

mits a generalized *-derivation F' associated with an x-derivation d and
F(z) € Z(R) for all z,y € R, then d = 0.

Proof. By hypothesis, we have
(3.14) [F(zy),z] =0, Vx,y,2 € R,
which implies that [F'(z)y* + zd(y), z] = 0, and so
F(z)[y", 2] + x[d(y), 2] + [, 2]d(y) = 0

for all z,y,2z € R. Replacing z by y* in the above relation, we have
z[d(y),y*| + [z, y*]d(y) = 0 for all z,y € R, that is,

(3.15) zd(y)y* = y*xd(y), V x,y € R.

Substituting xz for = in (3.15), we have zzd(y)y* = y*rzd(y) for all
x,y,z € R. Using the relation (15), we have zy*zd(y) = y*xzd(y)
for all z,y,z € R, that is, [z,y*]zd(y) = 0 for all z,y,z € R. Hence
[z, y*]Rd(y) = {0} for all z,y € R. Since R is prime, we have [z,y*] =0
or d(y) =0 for all z,y € R. But R is noncommutative, and so d(y) = 0
for all y € R, which means that d = 0. O

THEOREM 3.6. Let R be a semiprime x-ring. If R admits a generalized

reverse x-derivation F associate with a nonzero reverse x-derivation d,
then [d(z),z] =0 for all x,z € R.

Proof. By hypothesis, we have
(3.16) F(zy) = F(y)z* +yd(x), VY z,y € R.
Replacing = by zz in (3.16), we have
F((z2)y) = F(y)(z2)" + yd(x2)
= F(y)z"z" + y(d(z)x™ + zd(zx))
(3.17) = F(y)z"z" + yd(2)z™ + yzd(z)
for every x,y,z € R. On the other hand, we have
F(z(zy)) = F(zy)z" + zyd(x)
= (F(y)z" +yd(2))x" + zyd(x)
(3.18) = F(y)z*x™ + yd(z)z* + zyd(z)
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for every z,y,z € R. Comparing (3.17) and (3.18), we get [y, z]d(z) =0
for all x,y, z € R. Substituting d(z)y for y in this relation, we obtain
(3.19) [d(z),z]yd(z) =0, V x,y,z € R.

Multiplying the right side of (3.19) by zd(x), we have

(3.20) [d(z), z]yd(x)zd(z) =0, V z,y,z € R.

Multiplying the right side of (3.19) by d(x)z, we have

(3.21) [d(z), z]yd(z)d(x)z =0, ¥V z,y,z € R.

Subtracting (3.20) from (3.21), we have [d(x), z]yd(x)[d(z), z] = 0 for all

x,y,z € R. This implies that [d(x), z]R[d(x), z] = {0} for all z,z € R.
Since R is semiprime, we have [d(z), z] = 0 for all z, z € R. O

THEOREM 3.7. Let R be a noncommutative prime x-ring. If R admits
a generalized reverse x-derivation F' associated with a nonzero reverse
x-derivation d of R, then F is a reverse left x-multiplier of R.

Proof. By Theorem 3.6, we have
(3.22) [y, z]d(z) =0, V¥ z,y,z € R.

Replacing y by zy in (3.22), we have [zy, z]d(z) = 0, and so [z, z|yd(z) =

0 for all z,y,z € R. This implies that [z, z]Rd(x) = 0 for all z,z € R.
Since R is prime, we have [z,z] = 0 or d(z) = 0 for all z,z € R. Let
K={x€eR|dz)=0}and L ={x € R|[z,z] =0,V z € R}. Then
K and L are both additive subgroups and K UL = R, but (R, +) is not
union of two its proper subgroups, which implies that either L = R or
K = R. In the former case, R is commutative, contradiction. On the
other hand, if K = R, then d(z) = 0 for all x € R, that is, d = 0. Hence
F(xy) = F(y)z* for all z,y € R. This implies that F' is a reverse left
sx-multiplier of R. U

THEOREM 3.8. Let R be a prime x-ring. If R admits a generalized
«-derivation F' associated with an x-derivation d such that F([z,y]) =0
for all x,y € R, then d =0 or R is commutative.

Proof. By hypothesis, we have
(3.23) F(lz,y]) =0, Vz,y € R.
Replacing = by xy in (3.23), we have
F(lz,yly) = F([z,y])y" + [z, yld(y) = 0

for all z,y € R. By the relation (3.23), we have [z, y]d(y) = 0 for all
x,y € R. Substituting sz for x in this relation, we have [s,y]zd(y) for
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all z,y,s € R. This implies that [s,y]Rd(y) = {0} for all s,y € R.
Since R is prime, we have [s,y] = 0 or d(y) = 0 for all s,y € R. Let
K={yeR|dly)=0}and L ={y € R | [s,y] =0,V s € R}. Then
K and L are both additive subgroups and K U L = R, but (R,+) is
not union of two its proper subgroups, which implies that either K = R
or L = R. In the former case, we have d = 0, and in second case, R is
commutative. O

THEOREM 3.9. Let R be a prime x-ring. If R admits a generalized
x-derivation F' associated with an x-derivation d such that F(xoy) =0
for all x,y € R, then d =0 or R is commutative.

Proof. By hypothesis, we have
(3.24) F(zoy)=0, Vz,y€R.
Replacing = by xy in (3.24), we have

F((xoy)y) =F(zoy)y" + (xoy)d(y) =0
for all z,y € R. By the relation (3.24), we have (z o y)d(y) = 0 for all
x,y € R. Substituting sy for z in this relation, we have (s o y)yd(y)
for all y,s € R. This implies that (s o y)Rd(y) = {0} for all s,y € R.
Since R is prime, we have (soy) = 0 or d(y) = 0 for all s,y € R. Let
K={yeR|dy) =0and L={ye€e R|soy =0,V s e R}. Then
K and L are both additive subgroups and K UL = R, but (R, +) is not
union of two its proper subgroups, which implies that either K = R or
L = R. In the former case, we have d = 0. On the other hand, if L = R,
then we have soy = 0 for all s,y € R. Replacing s by sz in the last
relation and using the fact that ys = —sy, we obtain s[z,y] = 0 for all
s,y,z € R. That is, R[z,y] = {0}. This implies that zR][z,y] = {0} for
0 # x € R. Since R is prime, we have [z,y] = 0 for all y,z € R, which
means that R is commutative. O

THEOREM 3.10. Let R be a 2-torsion free prime *-ring. If R admits
a generalized x-derivation F' associated with an x-derivation d such that
F(xoy) = [z,y| for all z,y € R, then d = 0.

Proof. By hypothesis, we have
(3.25) F(xoy) =|z,y], Vz,y € R.
Replacing y by yx in (3.25), we have
F((z o y)e) = F(w o y)a* + (w0 y)d(x) = v, gl
for all x,y € R. By the relation (3.25), we get
(3.26) [z,y]z* + (xoy)d(z) = [z,y]z, V x,y € R.
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Substituting y for x in this relation, we have (y o y)d(y) = 0 for all
z,y € R. This implies that 2y?d(y) = {0} for all y € R. Since R is
2-torsion free, we have y2d(y) = 0 for all y € R. This implies that
yRd(y) = {0} for all y € R. Since R is prime, we obtain y = 0 or
d(y) = 0 for all y € R. In the former case, y = 0 for all y € R, a
contradiction. Hence d(y) = 0 for all y € R, that is, d = 0. O

THEOREM 3.11. Let R be a 2-torsion free prime x-ring. If R admits
a generalized x-derivation F' associated with an x-derivation d such that
F(zxoy) = —[z,y] for all z,y € R, then d = 0.

Proof. Using the similar technique with necessary variations in the
above theorem, we get the required result. ]
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