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A NOTE ON GENERALIZED ∗-DERIVATIONS OF

PRIME ∗-RINGS

Kyung Ho Kim*

Abstract. The aim of the present paper is to establish some re-
sults involving generalized ∗-derivations in ∗-rings and investigate
the commutativity of prime ∗-rings admitting generalized ∗-derivations
of R satisfying certain identities and some related results have also
been discussed.

1. Introduction

Over the last few decades, several authors have investigated the re-
lationship between the commutativity of the ring R and certain specific
types of derivations of R. The first result in this direction is due to E.
C. Posner [8] who proved that if a ring R admits a nonzero derivation d
such that [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative. This
result was subsequently, refined and extended by a number of authors.
In [7], Bresar and Vuckman showed that a prime ring must be commuta-
tive if it admits a nonzero left derivation. Recently, many authors have
obtained commutativity theorems for prime and semiprime rings admit-
ting derivation, generalized derivation. Bresar and Vukman [5] studied
the notions of a ∗-derivation and a Jordan ∗-derivation of R. The aim
of the present paper is to establish some results involving generalized ∗-
derivations in ∗-rings and investigate the commutativity of prime ∗-rings
admitting generalized ∗-derivations of R satisfying certain identities and
some related results have also been discussed.
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2. Preliminaries

Throughout R will represent an associative ring with center Z(R).
For all x, y ∈ R, as a usual commutator, we shall write [x, y] = xy− yx,
and x ◦ y = xy + yx. Also, we make use of the following two basic
identities without any specific mention:

x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z

(xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z]

[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z.

Let R is a ring. Then R is prime if aRb = {0} implies a = 0 or
b = 0. An additive mapping d : R → R is called a derivation if d(xy) =
d(x)y + xd(y) holds for all x, y ∈ R. An additive mapping x → x∗

of R into itself is called an involution if the following conditions are
satisfied (i) (xy)∗ = y∗x∗, (ii) (x∗)∗ = x for all x, y ∈ R. A ring equipped
with an involution is called an ∗-ring or ring with involution. Let R
be a ∗-ring. An additive mapping d : R → R is called an ∗-derivation
if d(xy) = d(x)y∗ + xd(y) holds for all x, y ∈ R. An additive mapping
d : R → R is called a reverse ∗-derivation if d(xy) = d(y)x∗+yd(x) holds
for all x, y ∈ R. An additive mapping F : R → R is called a generalized
derivation if there exists a derivation d such that F (xy) = F (x)y+xd(y)
for all x, y ∈ R. Let R be an ∗-ring. An additive mapping F : R → R
is called a generalized ∗-derivation if there exists an ∗-derivation d such
that F (xy) = F (x)y∗ + xd(y) for all x, y ∈ R. An additive mapping
F : R → R is called a generalized reverse ∗-derivation if there exists
an ∗-derivation d such that F (xy) = F (y)x∗ + yd(x) for all x, y ∈ R.
An additive mapping F : R → R is called a right ∗-multiplier of R if
F (xy) = x∗F (y) for all x, y ∈ R. Also, an additive mapping F : R → R
is called a left ∗-multiplier of R if F (xy) = F (x)y∗ for all x, y ∈ R. An
additive mapping F : R → R is called a reverse left ∗-multiplier of R if
F (xy) = F (y)x∗ for all x, y ∈ R and an additive mapping F : R → R
is called a reverse right ∗-multiplier of R if F (xy) = y∗F (x) for all
x, y ∈ R.

3. Generalized ∗-derivations of prime ∗-rings

Lemma 3.1. Let R be a semiprime ∗-ring and a ∈ R. If R admits a
generalized ∗-derivation F associated with an ∗-derivation d of R and
F (x) = [x, a] for all x ∈ R, then F = 0.
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Proof. By hypothesis, we have

(3.1) F (xy) = F (x)y∗ + xd(y), ∀ x, y ∈ R.

Replacing y by yz in (3.1), we have

(3.2) F (x(yz)) = F (x)z∗y∗ + xd(y)z∗ + xyd(z), ∀ x, y, z ∈ R

and

(3.3) F ((xy)z) = F (x)y∗z∗ + xd(y)z∗ + xyd(z), ∀ x, y, z ∈ R.

Combining (3.2) and (3.3), we have

(3.4) F (x)[y∗, z∗] = 0, ∀ x, y, z ∈ R.

Substituting y∗ for y and z∗ for z in (3.4), we have F (x)[y, z] = 0 for
all x, y, z ∈ R. Again, replacing y by yx in the last relation, we have
F (x)y[x, z] = 0 for all x, y, z ∈ R. This implies that F (x)R[x, z] =
{0} for all x, z ∈ R. Taking a in stead of z in this relation, we get
F (x)R[x, a] = {0} for all x ∈ R. If F (x) = [x, a], then, we have
[a, x]R[a, x] = {0} for all x ∈ R. Since R is semiprime, we have [x, a] = 0,
that is, F (x) = [x, a] = 0 for all x ∈ R. This implies that F = 0.

Theorem 3.2. LetR be a semiprime ∗-ring. IfR admits a generalized
∗-derivation F associated with ∗-derivation d of R, then F maps from
R to Z(R).

Proof. By hypothesis, we have

(3.5) F (xy) = F (x)y∗ + xd(y), ∀ x, y ∈ R.

Replacing y by yz in (3.5), we have

(3.6) F (x(yz)) = F (x)z∗y∗ + xd(y)z∗ + xyd(z), ∀ x, y, z ∈ R.

On the other hand,

(3.7) F (xyz) = F ((xy)z) = F (x)y∗z∗+xd(y)z∗+xyd(z), ∀ x, y, z ∈ R.

Combining (3.6) with (3.7), we have F (x)[y∗, z∗] = 0 for all x, y, z ∈ R.
Substituting y∗ for y and z∗ for z in this relation, we have F (x)[y, z] = 0
for all x, y, z ∈ R. Taking yF (x) instead of y in the last relation, we have

(3.8) F (x)y[F (x), z] = 0, ∀ x, y ∈ R.

Multiplying the left side of (3.8) by zF (x), we have

(3.9) zF (x)F (x)y[F (x), z] = 0, ∀ x, y, z ∈ R.

Again, multiplying the left side of (3.8) by F (x)z, we have

(3.10) F (x)zF (x)y[F (x), z] = 0, ∀ x, y, z ∈ R.
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Subtracting (3.9) from (3.10), we have[F (x), z]F (x)y[F (x), z] = 0 for all
x, y, z ∈ R. Hence we have [F (x), z]R[F (x), z] = {0} for all x, z ∈ R.
Since R is semiprime, we have [F (x), z] = 0 for all x, z ∈ R. Therefore
F is a mapping form R into Z(R).

Theorem 3.3. Let R be a prime ∗-ring. If R admits a generalized
∗-derivation F associated with an ∗-derivation d such that F (x) ̸= x and
F (xy) = F (x)F (y) for all x, y ∈ R, then d = 0.

Proof. By hypothesis, we have

(3.11) F (xy) = F (x)y∗ + xd(y) = F (x)F (y), ∀ x, y ∈ R.

Replacing x by xz in (3.11), we have

F (x)F (z)y∗ + xzd(y) = F (x)F (z)F (y)

= F (x)F (zy) = F (x)(F (z)y∗ + zd(y)),

which implies that (x − F (x))zd(y) = 0 for all x, y, z ∈ R. Hence we
have (x− F (x))Rd(y) = {0} for all x, y ∈ R. Since R is prime, we have
x−F (x) = 0 or d(y) = 0 for all x, y ∈ R. But F (x) ̸= x, and so d(y) = 0
for all y ∈ R, that is, d = 0.

Theorem 3.4. Let R be a prime ∗-ring. If R admits a generalized
∗-derivation F associated with an ∗-derivation d of R and F (xy) =
F (y)F (x) for all x, y ∈ R, then d = 0.

Proof. By hypothesis, we have

(3.12) F (xy) = F (x)y∗ + xd(y) = F (y)F (x), ∀ x, y ∈ R.

Replacing x by xy in (3.12), we have

F (xy)y∗ + xyd(y) = F (y)F (xy) = F (y)(F (x)y∗ + xd(y)),

which implies that F (y)F (x)y∗+xyd(y) = F (y)F (x)y∗ +F (y)xd(y) for
all x, y ∈ R. Hence we have

(3.13) xyd(y) = F (y)xd(y), ∀ x, y ∈ R.

Taking wx instead of x in (3.13) and using (3.13), we have wF (y)xd(y) =
F (y)wxd(y) for all x, y, w ∈ R. This implies that [w,F (y)]xd(y) = 0,
and so [w,F (y)]Rd(y) = {0} for all w, y ∈ R. Since R is prime, we have
d(y) = 0 or [w,F (y)] = 0 for all y, w ∈ R. Let K = {y ∈ R|d(y) = 0}
and L = {y ∈ R|[w,F (y)] = 0, ∀ w, y ∈ R}. Then K and L are both
additive subgroups and K ∪ L = R, but (R,+) is not union of two its
proper subgroups, which implies that either K = R or L = R. In the
former case, we have d = 0. If L = R, then [w,F (y)] = 0 for all w, y ∈ R.
Hence we have F (y) ∈ Z(R), and so F (xy) = F (y)F (x) = F (x)F (y) for
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all x, y ∈ R. Since F acts an endomorphism of R, it follows that d = 0
via Theorem 3.3.

Theorem 3.5. Let R be a noncommutative prime ∗-ring. If R ad-
mits a generalized ∗-derivation F associated with an ∗-derivation d and
F (x) ∈ Z(R) for all x, y ∈ R, then d = 0.

Proof. By hypothesis, we have

(3.14) [F (xy), z] = 0, ∀ x, y, z ∈ R,

which implies that [F (x)y∗ + xd(y), z] = 0, and so

F (x)[y∗, z] + x[d(y), z] + [x, z]d(y) = 0

for all x, y, z ∈ R. Replacing z by y∗ in the above relation, we have
x[d(y), y∗] + [x, y∗]d(y) = 0 for all x, y ∈ R, that is,

(3.15) xd(y)y∗ = y∗xd(y), ∀ x, y ∈ R.

Substituting xz for x in (3.15), we have xzd(y)y∗ = y∗xzd(y) for all
x, y, z ∈ R. Using the relation (15), we have xy∗zd(y) = y∗xzd(y)
for all x, y, z ∈ R, that is, [x, y∗]zd(y) = 0 for all x, y, z ∈ R. Hence
[x, y∗]Rd(y) = {0} for all x, y ∈ R. Since R is prime, we have [x, y∗] = 0
or d(y) = 0 for all x, y ∈ R. But R is noncommutative, and so d(y) = 0
for all y ∈ R, which means that d = 0.

Theorem 3.6. LetR be a semiprime ∗-ring. IfR admits a generalized
reverse ∗-derivation F associate with a nonzero reverse ∗-derivation d,
then [d(x), z] = 0 for all x, z ∈ R.

Proof. By hypothesis, we have

(3.16) F (xy) = F (y)x∗ + yd(x), ∀ x, y ∈ R.

Replacing x by xz in (3.16), we have

F ((xz)y) = F (y)(xz)∗ + yd(xz)

= F (y)z∗x∗ + y(d(z)x∗ + zd(x))

= F (y)z∗x∗ + yd(z)x∗ + yzd(x)(3.17)

for every x, y, z ∈ R. On the other hand, we have

F (x(zy)) = F (zy)x∗ + zyd(x)

= (F (y)z∗ + yd(z))x∗ + zyd(x)

= F (y)z∗x∗ + yd(z)x∗ + zyd(x)(3.18)
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for every x, y, z ∈ R. Comparing (3.17) and (3.18), we get [y, z]d(x) = 0
for all x, y, z ∈ R. Substituting d(x)y for y in this relation, we obtain

(3.19) [d(x), z]yd(x) = 0, ∀ x, y, z ∈ R.

Multiplying the right side of (3.19) by zd(x), we have

(3.20) [d(x), z]yd(x)zd(x) = 0, ∀ x, y, z ∈ R.

Multiplying the right side of (3.19) by d(x)z, we have

(3.21) [d(x), z]yd(x)d(x)z = 0, ∀ x, y, z ∈ R.

Subtracting (3.20) from (3.21), we have [d(x), z]yd(x)[d(x), z] = 0 for all
x, y, z ∈ R. This implies that [d(x), z]R[d(x), z] = {0} for all x, z ∈ R.
Since R is semiprime, we have [d(x), z] = 0 for all x, z ∈ R.

Theorem 3.7. Let R be a noncommutative prime ∗-ring. If R admits
a generalized reverse ∗-derivation F associated with a nonzero reverse
∗-derivation d of R, then F is a reverse left ∗-multiplier of R.

Proof. By Theorem 3.6, we have

(3.22) [y, z]d(x) = 0, ∀ x, y, z ∈ R.

Replacing y by xy in (3.22), we have [xy, z]d(x) = 0, and so [x, z]yd(x) =
0 for all x, y, z ∈ R. This implies that [x, z]Rd(x) = 0 for all x, z ∈ R.
Since R is prime, we have [x, z] = 0 or d(x) = 0 for all x, z ∈ R. Let
K = {x ∈ R | d(x) = 0} and L = {x ∈ R | [x, z] = 0, ∀ z ∈ R}. Then
K and L are both additive subgroups and K ∪L = R, but (R,+) is not
union of two its proper subgroups, which implies that either L = R or
K = R. In the former case, R is commutative, contradiction. On the
other hand, if K = R, then d(x) = 0 for all x ∈ R, that is, d = 0. Hence
F (xy) = F (y)x∗ for all x, y ∈ R. This implies that F is a reverse left
∗-multiplier of R.

Theorem 3.8. Let R be a prime ∗-ring. If R admits a generalized
∗-derivation F associated with an ∗-derivation d such that F ([x, y]) = 0
for all x, y ∈ R, then d = 0 or R is commutative.

Proof. By hypothesis, we have

(3.23) F ([x, y]) = 0, ∀ x, y ∈ R.

Replacing x by xy in (3.23), we have

F ([x, y]y) = F ([x, y])y∗ + [x, y]d(y) = 0

for all x, y ∈ R. By the relation (3.23), we have [x, y]d(y) = 0 for all
x, y ∈ R. Substituting sx for x in this relation, we have [s, y]xd(y) for
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all x, y, s ∈ R. This implies that [s, y]Rd(y) = {0} for all s, y ∈ R.
Since R is prime, we have [s, y] = 0 or d(y) = 0 for all s, y ∈ R. Let
K = {y ∈ R | d(y) = 0} and L = {y ∈ R | [s, y] = 0, ∀ s ∈ R}. Then
K and L are both additive subgroups and K ∪ L = R, but (R,+) is
not union of two its proper subgroups, which implies that either K = R
or L = R. In the former case, we have d = 0, and in second case, R is
commutative.

Theorem 3.9. Let R be a prime ∗-ring. If R admits a generalized
∗-derivation F associated with an ∗-derivation d such that F (x ◦ y) = 0
for all x, y ∈ R, then d = 0 or R is commutative.

Proof. By hypothesis, we have

(3.24) F (x ◦ y) = 0, ∀ x, y ∈ R.

Replacing x by xy in (3.24), we have

F ((x ◦ y)y) = F (x ◦ y)y∗ + (x ◦ y)d(y) = 0

for all x, y ∈ R. By the relation (3.24), we have (x ◦ y)d(y) = 0 for all
x, y ∈ R. Substituting sy for x in this relation, we have (s ◦ y)yd(y)
for all y, s ∈ R. This implies that (s ◦ y)Rd(y) = {0} for all s, y ∈ R.
Since R is prime, we have (s ◦ y) = 0 or d(y) = 0 for all s, y ∈ R. Let
K = {y ∈ R | d(y) = 0} and L = {y ∈ R | s ◦ y = 0, ∀ s ∈ R}. Then
K and L are both additive subgroups and K ∪L = R, but (R,+) is not
union of two its proper subgroups, which implies that either K = R or
L = R. In the former case, we have d = 0. On the other hand, if L = R,
then we have s ◦ y = 0 for all s, y ∈ R. Replacing s by sz in the last
relation and using the fact that ys = −sy, we obtain s[z, y] = 0 for all
s, y, z ∈ R. That is, R[z, y] = {0}. This implies that xR[z, y] = {0} for
0 ̸= x ∈ R. Since R is prime, we have [z, y] = 0 for all y, z ∈ R, which
means that R is commutative.

Theorem 3.10. Let R be a 2-torsion free prime ∗-ring. If R admits
a generalized ∗-derivation F associated with an ∗-derivation d such that
F (x ◦ y) = [x, y] for all x, y ∈ R, then d = 0.

Proof. By hypothesis, we have

(3.25) F (x ◦ y) = [x, y], ∀ x, y ∈ R.

Replacing y by yx in (3.25), we have

F ((x ◦ y)x) = F (x ◦ y)x∗ + (x ◦ y)d(x) = [x, y]x

for all x, y ∈ R. By the relation (3.25), we get

(3.26) [x, y]x∗ + (x ◦ y)d(x) = [x, y]x, ∀ x, y ∈ R.
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Substituting y for x in this relation, we have (y ◦ y)d(y) = 0 for all
x, y ∈ R. This implies that 2y2d(y) = {0} for all y ∈ R. Since R is
2-torsion free, we have y2d(y) = 0 for all y ∈ R. This implies that
yRd(y) = {0} for all y ∈ R. Since R is prime, we obtain y = 0 or
d(y) = 0 for all y ∈ R. In the former case, y = 0 for all y ∈ R, a
contradiction. Hence d(y) = 0 for all y ∈ R, that is, d = 0.

Theorem 3.11. Let R be a 2-torsion free prime ∗-ring. If R admits
a generalized ∗-derivation F associated with an ∗-derivation d such that
F (x ◦ y) = −[x, y] for all x, y ∈ R, then d = 0.

Proof. Using the similar technique with necessary variations in the
above theorem, we get the required result.
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